XWH - 09 - 1 - 0299 TITLE : Photoacoustic Imaging of Epilepsy PRINCIPAL

نویسنده

  • Huabei Jiang
چکیده

Photoacoustic tomography (PAT) is an emerging non-invasiveimaging technique with great potential for a wide range of biomedicalimaging applications. However, the conventional PAT reconstructionalgorithms often provide distorted images with strong artifacts in caseswhen the signals are collected from few measurements or over an aperturethat does not enclose the object. In this work, we present a total-variation-minimization (TVM) enhanced iterative reconstruction algorithm that canprovide excellent photoacoustic image reconstruction from few-detector andlimited-angle data. The enhancement is confirmed and evaluated usingseveral phantom experiments.© 2011 Optical Society of AmericaOCIS codes: (100.2980) Image enhancement; (170.3010) Image reconstruction techniques;(170.5120) Photoacoustic imaging; (170.6960) TomographyReferences and links1. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacousticimaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).2. S. J. Norton and T. Vo-Dinh, “Optoacoustic diffraction tomography: analysis of algorithms,” J. Opt. Soc. Am. A20(10), 1859–1866 (2003).3. A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, andR. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).4. L. A. Kunyansky, “Explicit inversion formulae for the spherical mean radon transform,” Inverse Probl. 23(1),373–383 (2007).5. D. Finch, S. Patch, and Rakesh, “Determining a Function from Its Mean Values Over a Family of Spheres,”SIAM J. Math. Anal. 35(5), 1213–1240 (2004).6. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys.Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).7. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient mapsof heterogenous media,” Appl. Phys. Lett. 88(23), 231101 (2006).8. L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient inturbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32(17), 2556–2558(2007).9. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusionequation approximation,” Med. Phys. 22(6), 691–701 (1995).10. S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical OpticalTomography: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. R. Alfano, S. B. Arridge, J.Beuthen, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds. (SPIE Press, 1993), pp.35–64.11. S. J. LaRoque, E. Y. Sidky, and X. Pan, “Accurate image reconstruction from few-views and limited-angle datain diffraction tomography,” J. Opt. Soc. Am. A 25(7), 1772–1782 (2008).12. J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol. 55(22), 6575–6599 (2010).13. H. Ammari, E. Bretin, V. Jugnon, and A. Wahab, “Photo-acoustic imaging for attenuating acoustic media,” inMathematical Modeling in Biomedical Imaging II, H. Ammari, ed., Vol. 2035 of Lecture Notes in Mathematics(Springer, 2011), pp. 53–80.14. H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Mathematical models in photoacoustic imaging of smallabsorbers,” SIAM Rev. 52(4), 677–695 (2010).15. H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Reconstruction of the optical absorption coefficient of a smallabsorber from the absorbed energy density,” SIAM J. Appl. Math. 71, 676–693 (2011). #151589 $15.00 USD Received 22 Jul 2011; revised 19 Aug 2011; accepted 19 Aug 2011; published 19 Aug 2011(C) 2011 OSA1 September 2011 / Vol. 2, No. 9 / BIOMEDICAL OPTICS EXPRESS 2649 16. K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction inoptoacoustic tomography by constrained total variation minimization,” Proc. SPIE 7899, 78993U, 78993U-6(2011).17. L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time-domain,” J. Opt. A, Pure Appl.Opt. 11(8), 085301 (2009).18. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35(19), 3447–3458 (1996).19. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23(4), 878–888 (2006).20. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012